翻訳と辞書
Words near each other
・ Klein Lukow
・ Klein Matterhorn
・ Klein Meckelsen
・ Klein Meetinghouse
・ Klein Memorial Auditorium
・ Klein Modellbahn
・ Klein Nordende
・ Klein Oak High School
・ Klein Offenseth-Sparrieshoop
・ Klein Paardenburg
・ Klein Pampau
・ Klein paradox
・ Klein Point
・ Klein polyhedron
・ Klein Priebus
Klein quadric
・ Klein quartic
・ Klein Rheide
・ Klein River
・ Klein Rodensleben
・ Klein Rogahn
・ Klein Rönnau
・ Klein Sankt Paul
・ Klein Schwechten
・ Klein Sexual Orientation Grid
・ Klein surface
・ Klein Time
・ Klein Tools
・ Klein transformation
・ Klein Trebbow


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Klein quadric : ウィキペディア英語版
Klein quadric

In mathematics, the lines of a 3-dimensional projective space, ''S'', can be viewed as points of a 5-dimensional projective space, ''T''. In that 5-space, the points that represent each line in ''S'' lie on a hyperbolic quadric, ''Q'' known as the Klein quadric.
If the underlying vector space of ''S'' is the 4-dimensional vector space ''V'', then ''T'' has as the underlying vector space the 6-dimensional exterior square Λ2''V'' of ''V''. The line coordinates obtained this way are known as Plücker coordinates.
These Plücker coordinates satisfy the quadratic relation
: p_ p_+p_p_+p_ p_ = 0
defining ''Q'', where
: p_ = u_i v_j - u_j v_i
are the coordinates of the line spanned by the two vectors ''u'' and ''v''.
The 3-space, ''S'', can be reconstructed again from the quadric, ''Q'': the planes contained in ''Q'' fall into two equivalence classes, where planes in the same class meet in a point, and planes in different classes meet in a line or in the empty set. Let these classes be C and C'. The geometry of ''S'' is retrieved as follows:
# The points of ''S'' are the planes in ''C''.
# The lines of ''S'' are the points of ''Q''.
# The planes of ''S'' are the planes in ''C''’.
The fact that the geometries of ''S'' and ''Q'' are isomorphic can be explained by the isomorphism of the Dynkin diagrams ''A''3 and ''D''3.
==References==

* .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Klein quadric」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.